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Complex nonequilibrium systems are often effectively described by a “statistics of a statistics”, in short, a
“superstatistics”. We describe how to proceed from a given experimental time series to a superstatistical
description. We argue that many experimental data fall into three different universality classes: �2 superstatis-
tics �Tsallis statistics�, inverse �2 superstatistics, and log-normal superstatistics. We discuss how to extract the
two relevant well separated superstatistical time scales � and T, the probability density of the superstatistical
parameter �, and the correlation function for � from the experimental data. We illustrate our approach by
applying it to velocity time series measured in turbulent Taylor-Couette flow, which is well described by
log-normal superstatistics and exhibits clear time scale separation.
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I. INTRODUCTION

Driven nonequilibrium systems of sufficient complexity
are often effectively described by a superposition of different
dynamics on different time scales. As a simple example con-
sider a Brownian particle moving through a changing envi-
ronment. A relatively fast dynamics is given by the velocity
of the Brownian particle, and a slow dynamics is given, e.g.,
by temperature changes of the environment. The two effects
are associated with two well separated time scales, which
result in a superposition of two statistics, or in a short, a
superstatistics �SS� �1–23�. The stationary distributions of
superstatistical systems typically exhibit non-Gaussian be-
havior with fat tails, which can decay with a power law, or as
a stretched exponential, or in an even more complicated way.
An essential ingredient of SS models is the existence of an
intensive parameter � that fluctuates on a large spatiotempo-
ral scale T. For the above example of a Brownian particle, �
is the fluctuating inverse temperature of the environment, but
in general � can also be an effective friction constant, a
changing mass parameter, a changing amplitude of Gaussian
white noise, the fluctuating energy dissipation in turbulent
flows, or simply a local variance parameter extracted from a
signal. The SS concept is quite general and has recently been
applied to a variety of physical systems, including Lagrang-
ian �10–12� and Eulerian �13,14� turbulence, defect turbu-
lence �15�, atmospheric turbulence �16,17�, cosmic ray sta-
tistics �18�, solar flares �19�, random networks �20,21�, and
mathematical finance �22,23�.

In this paper we address a problem that is of great interest
in experimental applications. Given an experimentally mea-
sured time series or signal, how can we check if this time
series is well described by a superstatistical model, i.e., does
it contain two separate time scales, and how can we extract
the relevant superstatistical parameters from the time series?
Further, since there are infinitely many SS �1�, which ones

are the most relevant for typical experimental situations?
We argue that many experimental data �see, e.g., Refs.

�11–13,16,24–26�� are well described by three major univer-
sality classes, namely, �2, inverse �2, and log-normal SS.
These SS represent a universal limit statistics for large
classes of dynamical systems. We then show how to extract
the superstatistical parameters from a given experimental
signal. Our example is a time series of longitudinal velocity
differences measured in turbulent Taylor-Couette flow �27�.
We will extract the two relevant time scales � and T from the
data and show that there is clear time scale separation for our
example. We will also investigate the probability density of
� and the �-correlation function. While our turbulent time
series appears to fall into the universality class of log-normal
superstatistics, our concepts are general and can, in principle,
be applied to any time series.

II. SUPERSTATISTICAL UNIVERSALITY CLASSES

Consider a driven nonequilibrium system which is inho-
mogeneous and consists of many spatial cells with different
values of some intensive parameter � �e.g., the inverse tem-
perature�. The cell size can be determined by the correlation
length of the continuously varying � field. Each cell is as-
sumed to reach local equilibrium very fast, i.e., the associ-
ated relaxation time � is short. The parameter � in each cell
is approximately constant during the time scale T, then it
changes to a new value. In the long-term run �t�T�, the
stationary distributions of this inhomogeneous system arise
as a superposition of Boltzmann factors e−�E weighted with
the probability density f��� to observe some value � in a
randomly chosen cell:
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p�E� = �
0

�

f���
1

Z���
��E�e−�Ed� . �1�

Here E is an effective energy for each cell, ��E� is the den-
sity of states, and Z��� is the normalization constant of
��E�e−�E for a given �. The simplest example is a Brownian
particle of mass m moving through a changing environment
in d dimensions. For its velocity v� one has the local Lange-
vin equation

v�̇ = − �v� + 	L� �t� �2�

�L� �t�: d-dimensional Gaussian white noise� which becomes
superstatistical because for a fluctuating environment the pa-
rameter �ª �2/m��� /	2� becomes a random variable as
well: it varies from cell to cell on the large spatio-temporal
scale T. Of course, for this example E= 1

2mv�2, and while on
the time scale T the local stationary distribution in each cell
is Gaussian,

p�v� ��� = � �

2

�d/2

e−�1/2��mv�2
, �3�

the marginal distribution describing the long-time behavior
of the particle for t�T,

p�v�� = �
0

�

f���p�v� ���d� �4�

exhibits nontrivial behavior. The large-�v� tails of the distri-
bution �4� depend on the behavior of f��� for �→0 �3�. For
example, if f��� is a �2 distribution of degree n, then Eq. �4�
generates Tsallis statistics �28,29�, with entropic index q
given by q=1+2/ �n+d� �5�. Of course, a necessary condi-
tion for a superstatistical description to make sense is the
condition �=�−1�T, because otherwise the system is not
able to reach local equilibrium before the next change of �
takes place. In superstatistical turbulence models
�5,10–12,14�, one formally replaces the variable v� in Eq. �2�
by the velocity difference u� �or acceleration a� on smallest
scales�, and � is related to energy dissipation �.

The distribution f��� is determined by the spatiotemporal
dynamics of the entire system under consideration. By con-
struction, � is positive, so f��� cannot be Gaussian. Let us
here consider three examples of what to expect in typical
experimental situations.

�a� There may be many �nearly� independent microscopic
random variables 
 j, j=1, . . . ,J, contributing to � in an ad-
ditive way. For large J their rescaled sum �1/	J�
 j=1

J 
 j will
approach a Gaussian random variable X1 due to the central
limit theorem. In total, there can be many different random
variables consisting of microscopic random variables, i.e.,
we have n Gaussian random variables X1 , . . . ,Xn due to vari-
ous relevant degrees of freedom in the system. As mentioned
before, � needs to be positive; a positive � is obtained by
squaring these Gaussian random variables. The resulting �
=
i=1

n Xi
2 is �2 distributed with degree n,

f��� =
1

��n

2
��

n

2�0
�n/2

�n/2−1e−n�/�2�0�, �5�

where �0 is the average of �. As shown in Refs. �5,30�, the
SS resulting from Eqs. �4� and �5� is Tsallis statistics �28�. It
exhibits power-law tails for large �v� �. Our above argument
shows that Tsallis statistics arises as a universal limit dynam-
ics, i.e., the details of the microscopic random variables 
 j
�e.g., their probability densities� are irrelevant.

�b� The same considerations as above can be applied if the
“temperature” �−1 rather than � itself is the sum of several
squared Gaussian random variables arising out of many mi-
croscopic degrees of freedom 
 j. The resulting f��� is the
inverse �2 distribution given by

f��� =
�0

��n

2
��

n�0

2
�n/2

�−n/2−2e−n�0/�2��. �6�

It generates superstatistical distributions �4� that have expo-
nential decays in �v� � �3,24�. Again this superstatistics is uni-
versal: details of the 
 j are irrelevant.

�c� Instead of � being a sum of many contributions, for
other systems �in particular, turbulent ones� the random vari-
able � may be generated by multiplicative random processes.
We may have a local cascade random variable X1=� j=1

J 
 j,
where J is the number of cascade steps and the 
 j are positive
microscopic random variables. By the central limit theorem,
for large J the random variable �1/	J�ln X1

= �1/	J�
 j=1
J ln 
 j becomes Gaussian for large J. Hence X1 is

log-normally distributed. In general there may be n such
product contributions to �, i.e., �=�i=1

n Xi. Then ln �
=
i=1

n ln Xi is a sum of Gaussian random variables; hence it
is Gaussian as well. Thus � is log-normally distributed, i.e.,

f��� =
1

	2
s�
exp�− �ln

�

�
�2

2s2 
 , �7�

where � and s2 are suitable mean and variance parameters
�1�. For related turbulence models, see, e.g., Refs.
�10,11,25,31�. Again this log-normal result is independent of
the details of the microscopic cascade random variables 
 j;
hence log-normal SS is universal as well.

Although more complicated cases can be constructed, we
believe that most experimentally relevant cases fall into one
of these three universality classes, or simple combinations of
them. �2 superstatistics seems to be relevant for cosmic ray
statistics �18�, and log-normal superstatistics has been found
for Lagrangian �10–12� and Eulerian �13,14� turbulence.
Candidate systems for inverse �2 superstatistics are systems
exhibiting velocity distributions with exponential tails �3,24�.

III. APPLICATION TO EXPERIMENTAL TIME
SERIES

Suppose some experimental time series u�t� is given �32�.
Our goal is to test the hypothesis that it is due to a supersta-
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tistics and if so, to extract the two basic time scales � and T
as well as f���. First let us determine the large time scale T.
For this we divide the time series into N equal time intervals
of size �t. The total length of the signal is tmax=N�t. We
then define a function ���t� by

���t� =
1

tmax − �t
�

0

tmax−�t

dt0

��u − ū�4�t0,�t

��u − ū�2�t0,�t
2 . �8�

Here �¯�t0,�t=�t0
t0+�t

¯dt denotes an integration over an in-
terval of length �t starting at t0, and ū is the average of u�t�
�we may either choose ū to be a local average in each cell or
a global average over the entire time series—our results do
not depend on this choice in a significant way�. Equation �8�
simply means that the local flatness is evaluated in each in-
terval of length �t, and the result is then averaged over all t0.
We now define the superstatistical time scale T by the con-
dition

��T� = 3. �9�

Clearly this condition simply implies that we are looking for
the simplest SS, a superposition of local Gaussians, which
have local flatness 3 �see Ref. �13� for similar ideas�. If �t is
so small that only one constant value of u is observed in each
interval, then of course ���t�=1. On the other hand, if �t is
so large that it includes the entire time series, then we obtain
the flatness of the distribution of the entire signal, which will
be larger than 3, since superstatistical distributions are fat-
tailed. Hence there exists a time scale T satisfying Eq. �9�.

The function ���t� is shown in Fig. 1 for longitudinal
velocity differences, u�t�=v�t+��−v�t�, measured in Taylor-
Couette flow at Reynolds number Re=540 000 �27�. The to-
tal number of measurement points was 2�107, and in the
present analysis �t�1000, so N�2�104, which means
there is sufficient statistics to obtain precise values for the
time scales T and �. For details of the experiment, see Ref.
�27�. For each time difference � �measured in units of the
sampling frequency, which was 2500 times the inner cylinder
rotation frequency�, the relevant superstatistical time scale T

FIG. 1. Determination of the superstatistics
long time scale T from the flatness function ���t�
given in Eq. �8�, for �=2 j, j=0,1 ,2 , . . . ,7 �from
top to bottom�. The intersections with the line �
=3 yield T=39,42,58,100,184,320,600,948,
respectively. Time is nondimensional �see text�.

FIG. 2. Determination of the superstatistics
short time scale � from the decay of the correla-
tion function Cu�t� of the velocity difference. De-
fining � by Cu���=e−1Cu�0�, we obtain for �=2 j,
j=0,1 ,2 , . . . ,7, �=2.1,2.3,2.8,4.3,7.2,12.1,
19.9,29.5, respectively.
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leading to locally Gaussian behavior is extracted in Fig. 1.
The time scales T have to be compared with the relaxation
times �=�−1 of the dynamics, which can be estimated from
the short-time exponential decay of the correlation function
Cu�t− t��= �u�t�u�t��� of the velocity difference u �Fig. 2�. We
find that the ratio T /��17–34 is large compared to unity,
and the ratio has only a weak �logarithmic� dependence on �
�Fig. 3�. Thus there are indeed two well separated time scales
in the time series for turbulent Couette-Taylor flow. The ef-
fects of different time scale ratios T /� have also been studied
in numerical simulations of superstatistical Langevin equa-
tions �33�.

Laboratory data were obtained for a wide range of Rey-
nolds numbers, so we can also examine how the time scale
ratio changes with the Reynolds number Re. Figure 4 shows
that T /� increases with increasing Re, meaning that the su-
perstatistics approach becomes more and more exact for Re
→�.

Next, we are interested in the analysis of the slowly vary-
ing stochastic process ��t�. Since the variance of the local

Gaussians 	� /2
e−�1/2��u2
is given by �−1, we can determine

the process ��t� from the time series as

��t0� =
1

�u2�t0,T − �u�t0,T
2 . �10�

We obtain the probability density f��� as a histogram of
��t0� for all values of t0, as shown in Fig. 5. We compare the
experimental data with log-normal �2 and inverse �2 distri-
butions with the same mean ��� and variance ��2�− ���2 as
the experimental data. The fit of the data to a log-normal
distribution is significantly better than to a �2 or inverse �2.
Indeed, the cascade picture of energy dissipation in turbulent
flows suggests that our time series should belong to the log-
normal universality class of superstatistics �see Sec. II C�. A
power-law relation between the energy dissipation rate � and
� was found for the Couette-Taylor turbulence data in an
analysis in Ref. �13�. Note that if such a power-law relation
is valid, then a log-normally distributed � implies a log-
normally distributed �, and vice versa.

For superstatistics to make physical sense, the variable �
must change slowly compared to u. This is indeed the case
for our turbulence data, as Fig. 6 illustrates for a sample time
series. A slow �-dynamics also implies a slow correlation

FIG. 3. The time scale ratio T /�, given as a
function of � for turbulence data at Re=540 000,
is large compared to unity. Thus the long and
short time scales are well separated, as required
for superstatistics. The dashed line is a fit given
by T /�=17+3 ln �.

FIG. 4. Time scale ratio T /� as a function of
Reynolds number Re for �=8,4 ,2 ,1 �from top to
bottom�.
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FIG. 5. Probability density f��� extracted
from the turbulent time series ��=16�, and com-
pared with log-normal, �2, and inverse �2 distri-
butions, on �a� linear-linear and �b� log-log plots.
All distributions have the same mean and vari-
ance as the experimental data.

FIG. 6. Time series of ��t� �top� and u�t� �bot-
tom�. For this example �=2 and T=42.
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FIG. 7. Correlation functions C��t� �top� and
�Cu�t�� �bottom� for �=1. The straight lines rep-
resent power laws with exponents −0.9 and −1.8.
Similar results are obtained for other values of �.

FIG. 8. Comparison of the measured �fluctu-
ating lines� and predicted �dashed lines� probabil-
ity distribution p�u� for velocity differences on
�a� semilog plot, which emphasizes the tails, and
�b� linear-linear plot, which emphasizes the peak.
The predicted p�u� was obtained from Eq. �12�
with f��� being a log-normal distribution with the
same parameters as in Fig. 5 ��=16�.
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decay of the �-correlation function C��t− t��= ���t���t���.
For our data we observe a power-law decay with a small
exponent, C��t�� t−0.9 �Fig. 7�. This means that ��t� indeed
has a long memory and changes slowly, a necessary consis-
tency condition for the superstatistics approach. For com-
parison, the correlation function of the longitudinal velocity
difference u�t� first decays exponentially fast and only fi-
nally, for very large times, approaches a power-law decay of
the form Cu�t�� t−1.8, as shown in Fig. 7. Note that for t
�6 the �-correlation is larger than the u correlation by a
factor 10–100.

Finally, we may check the validity of the general SS for-
mula

p�u� = �
0

�

f���p�u���d� , �11�

where p�u ��� is the conditional distribution of the signal u�t�
in cells of size T, and p�u� is the marginal stationary distri-
bution of the entire signal. For log-normal superstatistics this
means

p�u� =
1

2
s
�

0

�

d��−1/2 exp�− �ln��/���2

2s2 �e−�1/2��u2
.

�12�

As shown in Fig. 8, there is excellent agreement between the
experimental histogram and the superstatistical model pre-
diction, both in the tails and in the region around the peak of
the distribution.

For any superstatistics one can formally define a param-
eter q by �1�

q ª

��2�
���2 . �13�

q measures in a quantitative way the deviation from Gauss-
ian statistics. No fluctuations in � at all correspond to f���
=���−�0� and q=1, i.e., ordinary equilibrium statistical me-
chanics. For �2 superstatistics, the above q is given by q

=1+2/n �1,30� and is nearly the same as the entropic index
qT introduced by Tsallis �5,28,29� �qT=1+2/ �n+1��. For
log-normal �LN� superstatistics, one can relate q to the flat-
ness F= �u4� / �u2�2 of the distribution p�u�. Since for log-
normal superstatistics �14�

���LN = �e�1/2�s2
, �14�

��2�LN = �2e2s2
, �15�

�u2� = �−1e�1/2�s2
, �16�

�u4� = 3�−2e2s2
, �17�

where � and s2 are the mean and variance parameters of the
distribution �7�, we arrive at the following simple relation:

q = es2
=

1

3
F , �18�

using Eq. �13�. We thus have two different equations to
evaluate q for our time series. The first one, based on Eq.
�13�, is always valid �i.e., for any f����, whereas the second
one, based on Eq. �18�, should coincide with the first one
provided the system is described by log-normal superstatis-
tics. Figure 9 shows the q values that we extract from the
experimental data for Re=540 000 using both methods. As
expected, q decreases monotonically with scale �. Both
curves agree well for ��2. This indicates that log-normal
superstatistics is a good model for our data, and that our
extraction of the time scale T of the process ��t� is consis-
tent. Significant deviations between the two q-values occur
only on the smallest scale �=1, where the experiment
reaches its resolution limits.

IV. CONCLUSIONS

In this paper we have advocated the view that the non-
Gaussian behavior of many complex driven nonequilibrium
systems can often be understood as a superposition of two

FIG. 9. The parameter q �Eq. �13�� as a func-
tion of �, as evaluated from Eq. �13� �q fluctua-
tions� and Eq. �18� �q flatness�.
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different statistics on different time scales, in short, a super-
statistics. We have argued that typical experimental situations
are described by three relevant universality classes, namely,
�2, inverse �2, and log-normal superstatistics. Our example,
turbulent Taylor Couette flow, falls into the universality class
of log-normal superstatistics. This means the time series is
essentially described by local Boltzmann factors e−�1/2��u2

whose variance parameter � varies slowly according to a
log-normal distribution function. We have developed a gen-
eral method to extract from data the process ��t�, its prob-
ability density f���, and its correlation function. Our ap-
proach is applicable to any experimental time series. We
have extracted the two relevant time scales � �the relaxation

time to local equilibrium� and T �the large time scale on
which the intensive parameter � fluctuates�. Our main result
is that for turbulent Taylor-Couette flow there is clear time
scale separation, which is a necessary condition for a super-
statistical description to make physical sense. The ratio T /�
grows logarithmically with the scale separation � on which
longitudinal velocity differences are investigated. Moreover,
T /� also increases with increasing Reynolds number, making
the superstatistical approach more and more exact for in-
creasing Reynolds number. The experimentally measured
distributions of � and u agree very well with the superstatis-
tical model predictions.

�1� C. Beck and E. G. D. Cohen, Physica A 322, 267 �2003�.
�2� E. G. D. Cohen, Pramana 64, 635 �2005�.
�3� H. Touchette and C. Beck, Phys. Rev. E 71, 016131 �2005�.
�4� C. Vignat, A. Plastino, and A. R. Plastino, cond-mat/0505580.
�5� C. Beck, Phys. Rev. Lett. 87, 180601 �2001�.
�6� C. Tsallis and A. M. C. Souza, Phys. Rev. E 67, 026106

�2003�.
�7� P.-H. Chavanis, Physica A 359, 177 �2006�.
�8� P. Allegrini, F. Barbi, P. Grigolini, and P. Paradisi, cond-mat/

0503335.
�9� J. Luczka and B. Zaborek, Acta Phys. Pol. B 35, 2151 �2004�.

�10� C. Beck, Europhys. Lett. 64, 151 �2003�.
�11� A. M. Reynolds, Phys. Rev. Lett. 91, 084503 �2003�.
�12� N. Mordant, A. M. Crawford, and E. Bodenschatz, Physica D

193, 245 �2004�.
�13� S. Jung and H. L. Swinney, Phys. Rev. E 72, 026304 �2005�.
�14� C. Beck, Physica D 193, 195 �2004�.
�15� K. E. Daniels, C. Beck, and E. Bodenschatz, Physica D 193,

208 �2004�.
�16� S. Rizzo and A. Rapisarda, in Proceedings of the 8th Experi-

mental Chaos Conference, Florence, AIP Conf. Proc. No. 742
�AIP, Melville 2004�, p. 176.

�17� S. Rizzo and A. Rapisarda, cond-mat/0502305.

�18� C. Beck, Physica A 331, 173 �2004�.
�19� M. Baiesi, M. Paczuski, and A. L. Stella, cond-mat/0411342.
�20� S. Abe and S. Thurner, Phys. Rev. E 72, 036102 �2005�.
�21� H. Hasegawa, cond-mat/0506301.
�22� J.-P. Bouchard and M. Potters, Theory of Financial Risk and

Derivative Pricing �Cambridge University Press, Cambridge,
2003�.

�23� M. Ausloos and K. Ivanova, Phys. Rev. E 68, 046122 �2003�.
�24� F. Sattin and L. Salasnich, Phys. Rev. E 65, 035106�R� �2002�.
�25� B. Castaing, Y. Gagne, and E. J. Hopfinger, Physica D 46, 177

�1990�.
�26� C. Beck, G. S. Lewis, and H. L. Swinney, Phys. Rev. E 63,

035303�R� �2001�.
�27� G. S. Lewis and H. L. Swinney, Phys. Rev. E 59, 5457 �1999�.
�28� C. Tsallis, J. Stat. Phys. 52, 479 �1988�.
�29� Nonextensive Statistical Mechanics and Its Applications, ed-

ited by S. Abe and Y. Okamoto �Springer, Berlin, 2001�.
�30� G. Wilk and Z. Wlodarczyk, Phys. Rev. Lett. 84, 2770 �2000�.
�31� A. N. Kolmogorov, J. Fluid Mech. 13, 82 �1962�.
�32� H. Kantz and T. Schreiber, Nonlinear Time Series Analysis

�Cambridge University Press, Cambridge, 1997�.
�33� R. Lambiotte and M. Ausloos, cond-mat/0508773.

BECK, COHEN, AND SWINNEY PHYSICAL REVIEW E 72, 056133 �2005�

056133-8


